If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+60x+70=0
a = 2; b = 60; c = +70;
Δ = b2-4ac
Δ = 602-4·2·70
Δ = 3040
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3040}=\sqrt{16*190}=\sqrt{16}*\sqrt{190}=4\sqrt{190}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-4\sqrt{190}}{2*2}=\frac{-60-4\sqrt{190}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+4\sqrt{190}}{2*2}=\frac{-60+4\sqrt{190}}{4} $
| 18a-3=5 | | (x-2)^2/3=81 | | F(x)=9x^2-18x | | 1/4x-1/4=1/3x+1/2= | | 7a+50=180 | | 48=(3x+2)(3x+6) | | 3u–-4=13 | | 4(x+7)=9(x-1)22 | | 5-(9/x)=0 | | -9(3+2)-9=x | | (2t^2+2t-3)/(3t^2+5t-13)=1 | | 4t+1+5t-8t=3+1 | | 5x-48=55 | | 9t^2-28t+3=0 | | 3/4+4m/6=41/12 | | 15x^2/25x^2+20x=0 | | 3/4+3/4+4m/6=41/12 | | 32x^2+64x-40=0 | | 6x-81=3x | | -4(2n-5)=-26 | | 6(x-1.4)=9.3 | | 2x^2+5x=30-2x | | 6(x-4)=9.3 | | x=(2x+4)(6x+12) | | 2y+28=y+50 | | 8x-7.5=5x-9 | | (10)^(3-x)=1 | | 1-4a^2=0 | | -30=-7w+2(w-5) | | 6x^2+72x+120=0 | | 6p+9=5p+12 | | 3x+7=2x-27 |